
Controlling the 3.5 Drive Hardware on the Apple IIGS

Neil Parker

nparker@cie.uoregon.edu
parker@corona.uoregon.edu
Version 1.00
February 1994

COPYRIGHT by 1994 Neil Parker
All Rights Reserved

========
Abstract
========
This document describes how to control the Apple 3.5 drive hardware without
going through ProDOS. Accessing the disk drive and the IWM interface chip
are described.

===
WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
===
This document is based on information found in several publications, as
listed in the Bibliography at the end of this note, my own disassemblies
of the relevant Apple IIGS ROM routines, and on some experimentation. I
can make no guarantees as to the accuracy of this information: it should
be considered as a starting point for your own explorations rather than
as an authoritative source.

Remember that when you use this information you are dealing directly with the
Naked Hardware, and the myriad protective features of the firmware and
operating system are not available. Should you be so foolish as to try out
this information with a non-expendable disk in the drive, I will not be held
responsible for any lost data.

=============
General Notes
=============
All the sample routines in this article assume the the processor is in
emulation mode or 8-bit native mode.

All I/O locations mentioned are in bank $E0 or $E1, and also in bank 0
or 1 if I/O shadowing is enabled.

============
Introduction
============
Controlling the Apple 3.5 Drive hardware directly requires a knowledge of
two separate pieces of hardware: the disk drive itself, and the Integrated
Woz Machine (IWM) interface chip.

========
IWM Chip
========
The IWM chip in the Apple IIGS is configured to reside in internal slot 6.
Its I/O locations are the same as the original Disk][interface in slot 6:
 CA0 EQU $C0E0 ;stepper phase 0 / control line 0

 CA1 EQU $C0E2 ;stepper phase 1 / control line 1
 CA2 EQU $C0E4 ;stepper phase 2 / control line 2
 LSTRB EQU $C0E6 ;stepper phase 3 / control strobe
 ENABLE EQU $C0E8 ;disk drive off/on
 SELECT EQU $C0EA ;select drive 1/2
 Q6 EQU $C0EC
 Q7 EQU $C0EE

Each of these I/O locations represents a two-way switch; accessing location
X turns off the switch; accessing location X+1 turns it on.

For a 5.25-inch drive, the switches CA0...LSTRB control the stepper motor
which positions the read/write head over the desired track. For a 3.5-inch
drive, these switches have become general-purpose control lines. Using
these control lines will be described later.

The ENABLE switch turns the drive off and on. This switch turns on the red
"in use" light, holds the disk in the drive, and prepares the drive to
receive further commands. Unlike the 5.25-inch drive, it does not start
the spindle motor spinning. The command to start the spindle motor will
be described later.

The SELECT switch still fully retains its original function: if it is off,
drive 1 will be accessed; turning it on selects drive 2.

The switches Q6 and Q7 together form a single four-way switch. The function
of this switch is somewhat complex, and will be covered in detail later.

The following additional memory locations are also important when dealing
with the 3.5-inch drive:

SLTROMSEL EQU $C02D ;Clear bit 6 to enable internal slot 6 hardware
DISKREG EQU $C031 ;Additional disk drive control register
CYAREG EQU $C036 ;System speed and motor-on detect bits

Bit 6 of SLTROMSEL controls whether the internal hardware and firmware
for slot 6 is available, or whether an external card in slot 6 is
available. Before any access to the disk drive is possible, the
internal hardware for slot 6 must be selected by turning off bit 6.
Before modifying this register, the original contents should be saved
somewhere so that your routine can restore the original system state
when it is through with the drive.

The 3.5-inch drive does its I/O twice as fast as the 5.25-inch drive,
so it is desirable to set the system speed to "fast" when reading or
writing data to avoid getting out of step with the drive. This step is not
absolutely necessary, but it helps a LOT--when the system speed is slow,
each data byte from the disk drive must be dealt with in 16 cycles or less,
which puts uncomfortably tight timing constraints on the code.

Setting the speed is not as simple as turning on bit 7 of CYAREG, due
to the way the speed setting interacts with disk accesses. If a
5.25-inch drive is connected to slot 6, either through a disk interface
card in slot 6 or through the built-in disk drive daisy-chain, the slot 6
motor-on detect feature will be enabled. This causes the system speed to
revert to slow whenever that disk is accessed, regardless of the current
system speed setting. The system speed must be slowed down to ensure

that the 8-bit operating systems, whose timing loops are all written
under the assumption that the system speed is 1 MHz, can access the disk
drive properly. This automatic slowdown can be disabled by setting bit 2
of CYAREG to 0 before accessing the 3.5-inch drive. As usual, this
register should be saved before it is modified, and restored when your code
is through using the drive.

DISKREG contains two bits of interest to the 3.5-inch drive: bit 7 which
is a general purpose control line and bit 6 which enables 3.5-inch drive
support. The other bits are reserved and should not be modified. The
layout of DISKREG is:

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | S | E | R | R | R | R | R | R |
 +---+---+---+---+---+---+---+---+

 S General purpose control line used in conjunction with
 CA0...LSTRB switches
 E Enables 3.5-inch drive support:
 0 = 5.25-inch drive and smartport devices available
 1 = 3.5-inch drive available
 R Reserved

Note:
 The Hardware Reference and the Firmware both incorrectly state
 that bit 7 selects between the upper and lower heads of the drive.

One of the first things a 3.5-inch drive routine should do is turn on
bit 6 of DISKREG to ensure that the proper device is accessed. Similarly,
the last thing a 3.5-inch drive routine should do is turn this bit back
off to prevent other programs from becoming hopelessly confused about
which disk drive is available.

Note that SLTROMSEL, CYAREG, and DISKREG each contain bits that your
program should not modify. Always use a read-modify-write sequence to
change only the bits of interest.

=======================
Accessing IWM Registers
=======================
The IWM chip has several internal registers available to programs.
Access to these registers is controlled by the Q6 and Q7 switches.

 +=====+=====+=======================================+
 | Q6 | Q7 | Register |
 +=====+=====+=======================================+
 | off | off | Read data register |
 +-----+-----+---------------------------------------+
 | off | on | Read handshake register |
 +-----+-----+---------------------------------------+
 | on | off | Read status register |
 +-----+-----+---------------------------------------+
 | on | on | Write mode register (if drive is off) |
 | | | data register (if drive is on) |
 +-----+-----+---------------------------------------+

The mode register is a write-only register containing several flag bits
which control various features if the IWM. To access it, turn off the
drive (by accessing ENABLE), turn on Q6 and Q7, and write to any
odd-numbered address in the $C0E0...$C0EF range.

Note that the drive may remain active for a second or two after the ENABLE
access, and that the write to the mode register will fail unless the drive
is fully deactivated. This means that the mode register must be repeatedly
written until the status register (see below) indicates that the desired
changes have taken effect. The IIGS ROM uses a routine like the following
to accomplish this (enter with the desired mode in the Y-register):
 SELIWM LDA ENABLE ;turn drive off
 LDA Q6+1 ;prepare to access mode & status regs
 BRA SELIWM1
 SELIWM2 TYA
 STA Q7+1 ;try writing to mode reg
 SELIWM1 TYA
 EOR Q7 ;check status reg
 AND #$1F ;(only bits 0-4 matter)
 BNE SELIWM2 ;if different, try writing again
 RTS

The bits of the mode register are laid out as follows:
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | R | R | R | S | C | M | H | L |
 +---+---+---+---+---+---+---+---+

With the various bit meanings described below:
 Bit Function
 --- --------
 R Reserved
 S Clock speed:
 0 = 7 MHz
 1 = 8 MHz
 Should always be 0.
 C Bit cell time:
 0 = 4 usec/bit (for 5.25 drives)
 1 = 2 usec/bit (for 3.5 drives)
 M Motor-off timer:
 0 = leave drive on for 1 sec after program turns
 it off
 1 = no delay
 Should be 0 for 5.25 and 1 for 3.5.
 H Handshake protocol:
 0 = synchronous (software must supply proper
 timing for writing data)
 1 = asynchronous (IWM supplies timing)
 Should be 0 for 5.25 and 1 for 3.5.
 L Latch mode:
 0 = read-data stays valid for about 7 usec
 1 = read-data stays valid for full byte time
 Should be 0 for 5.25 and 1 for 3.5.

Before doing I/O to the 3.5-inch drive, the mode register should be set
to $0F. When your routine is done, it should be sure to set the mode
register back to $00.

The status register is a read-only register which contains information
about the current status of the drive and the IWM. To access it, turn
Q7 off and Q6 on, and read from any even-numbered address in the
$C0E0...$C0EF range.

The bits of the status register are laid out as follows:
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | I | R | E | S | C | M | H | L |
 +---+---+---+---+---+---+---+---+

 Bit Function
 --- --------
 I Sense input.
 write-protect indicator (5.25-inch drive)
 general status line (3.5-inch drive)
 R Reserved.
 E Drive enabled
 0 = no disk drive is on
 1 = a disk drive is on.
 S Same as S bit in the mode register.
 C Same as C bit in the mode register.
 M Same as M bit in the mode register.
 H Same as H bit in the mode register.
 L Same as L bit in the mode register.

The handshake register is a read-only register used when writing to the
disk in asynchronous mode (when bit 1 of the mode register is on). It
indicates whether the IWM is ready to receive the next data byte. To
read the handshake register, turn switches Q6 off and Q7 on, and read
from any even-numbered address in the $C0E0...$C0EF range.

The bits of the mode register are laid out as follows:
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | B | U | R | R | R | R | R | R |
 +---+---+---+---+---+---+---+---+

 Bit Function
 --- --------
 B Register Ready
 0 = IWM is busy
 1 = IWM is ready for data
 U Under-run
 0 = write under-run has occurred (the program took
 too long to write the next byte)
 1 = no under-run
 R Reserved.

The data register is the register that you read to get the actual data
from the disk and write to store data on the disk. To read it, turn Q6
and Q7 off and read from any even-numbered address in the $C0E0...$C0EF
range. To write it, turn Q6 and Q7 on and write to any odd-numbered
address in the $C0E0...$C0EF range. When reading, the high bit of the
data register becomes 1 when the data is valid. The reason the high
bit indicates valid data is due to the structure of data on the disk;

all valid disk bytes have the high bit set.

Once the disk is properly configured, reading data is quite simple; the
following code illustrates the technique:
 LDA Q7 ;insure read mode
 R1 LDA Q6 ;ready yet?
 BPL R1 ;if not, try again
 STA DATA1 ;got a valid byte, so save it
 R2 LDA Q6 ;repeat ad nauseam...
 BPL R2
 STA DATA2
 R3 LDA Q6
 BPL R3
 STA DATA3
 etc...

Writing data is somewhat more difficult, but mercifully it is not necessary
for the user's program to count out precise 32-cycle intervals as it was
with the 5.25-inch drive. Instead, the asynchronous mode of the IWM takes
care of the counting for you. The following code illustrates the technique:
 BIT Q6+1 ;prepare for writing
 LDA DATA1 ;get first data
 STA Q7+1 ;set write mode and write data at same time
 LDA DATA2 ;get second data
 W1 BIT Q6 ;ready yet?
 BPL W1 ;if not, try again
 STA Q6+1 ;write second data
 LDA DATA3 ;do it again...
 W2 BIT Q6
 BPL W2
 STA Q6+1
 LDA DATA4 ;and again...
 W3 BIT Q6
 BPL W3
 STA Q6+1
 etc...
 WLAST BIT Q6 ;wait until last data underruns
 BVS WLAST
 BIT Q7 ;be VERY SURE to turn off write mode!
 RTS

Note that in the write routine, the first byte is written differently
than the rest: the STA Q7+1 activates write mode and writes the byte
all in one step.

In actual practice, you would probably want to use a loop to read and
store (or load and write) the data.

==
Accessing Disk Drive Status and Control Bits
==
In addition to programming the IWM, it is also necessary to program the
drive itself, which is somewhat "smarter" than the 5.25-inch drive (even
though it is a "dumb" device).

The 3.5-inch drive contains several internal status bits which the
user's program can examine, and several internal control switches which

the user's program can use to control various functions of the drive.
These status and control bits are accessed by the CA0...LSTRB switches
mentioned above and by the SEL line (bit 7 of DISKREG). CA0...CA2 and
SEL form a 16-way switch which selects the desired control or status
function, and the LSTRB switch signals the drive to perform a control
function. The IIGS ROM uses the following routine to select a status or
control function (enter with desired function in A-reg):
 SEL35 BIT CA0 ;set switches to known state
 BIT CA1+1
 BIT LSTRB
 BIT CA2
 LSR
 BCC SEL35A
 BIT CA2+1 ;if bit 0 on, turn on CA2
 SEL35A LSR
 PHA
 LDA DISKREG
 AND #$7F ;if bit 1 off, turn off SEL
 BCC SEL35B
 ORA #$80 ;else turn on SEL
 SEL35B STA DISKREG
 PLA
 LSR
 BCC SEL35C
 BIT CA0+1 ;if bit 2 on, turn on CA0
 SEL35C LSR
 BCS SEL35D
 BIT CA1 ;if bit 3 off, turn off CA1
 SEL35D RTS

To read a status bit, turn Q6 off, Q7 on, and ENABLE on, configure
CA0...CA2 and SEL for the desired function, and read the status bit from
bit 7 of the IWM status register. The IIGS ROM uses the following code
to accomplish this:

 STAT35 JSR SEL35 ;select desired status bit
 BIT Q6+1
 BIT Q7 ;test status register
 RTS ;(returns result in processor N-flag)

The status bits are as follows:

 Param for
 CA2 CA1 CA0 SEL STAT35 Function
 --- --- --- --- ------ --------
 off off off off $00 Step direction.
 0 = head set to step inward
 (toward higher-numbered tracks)
 1 = head set to step outward
 (toward lower-numbered tracks)
 off off off on $02 Disk in place.
 0 = disk in drive
 1 = drive is empty.
 off off on off $04 Disk is stepping.
 0 = head is stepping between tracks
 1 = head is not stepping.
 off off on on $06 Disk locked.

 0 = disk is write protected
 1 = disk is write-enabled.
 off on off off $08 Motor on.
 0 = spindle motor is spinning
 1 = motor is off
 off on off on $0A Track 0.
 0 = head is at track 0
 1 = head is at some other track
 This bit becomes valid beginning 12 msec
 after the step that places the head at
 track 0.
 off on on off $0C *Disk switched?
 0 = user ejected disk by pressing
 the eject button
 1 = disk not ejected.
 off on on on $0E Tachometer. 60 pulses per disk revolution
 on off off off $01 Instantaneous data from lower head. Reading
 this bit configures the drive to do I/O with
 the lower head.
 on off off on $03 Instantaneous data from upper head. Reading
 this bit configures the drive to do I/O with
 the upper head.
 on on off off $09 Number of sides.
 0 = single-sided drive
 1 = double-sided drive
 on on off on $0B *Disk ready for reading?
 0 = ready
 1 = not ready
 I am not too sure about this bit. The
 firmware waits for this bit to go low
 before trying to read a sector address
 field.
 on on on on $0F Drive installed.
 0 = drive is connected
 1 = no drive is connected

Note:
 Functions marked with an asterisk, i.e. "*", are used by the IIGS
 ROM but not documented in any publication available to me. I am
 fairly certain of the function of status bit $0C (used by the
 firmware to test for disk-switched errors), but I am unsure
 about status bit $0B (if my programs neglect to test for it,
 the drive displays an annoying tendency to start reading while
 the head is still stepping).

 The settings of most of these bits are "backwards": 0 means
 "yes" and 1 means "no".

To perform a control function, turn off LSTRB, configure CA0, CA1, and
SEL for the desired function, set CA2 to the desired value (all control
functions can be turned on or off), and then turn LSTRB on and back off.
The IIGS ROM uses the following code to accomplish this:
 CONT35 JSR SEL35 ;select desired function
 BIT LSTRB+1 ;strobe on
 BIT LSTRB ;strobe off
 RTS

The control functions are as follows:

 Param for
 CA1 CA0 SEL CA2 CONT35 Function
 --- --- --- --- ------- --------
 off off off off $00 Set step direction inward (toward higher-
 numbered tracks.)
 off off off on $01 Set step direction outward (toward lower-
 numbered tracks.
 off off on on $03 *Reset disk-switched flag? (The firmware
 uses this to clear disk-switched errors.)
 off on off off $04 Step one track in current direction (takes
 about 12 msec).
 on off off off $08 Turn spindle motor on.
 on off off on $09 Turn spindle motor off.
 on on off on $0D Eject the disk. This takes about 1/2 sec to
 complete. The drive may not recognize further
 control commands until this operation is
 complete.

* Again, the asterisk marks a function used by the ROM but not
documented in any publication available to me.

=======================
Description of Disk I/O
=======================
The following pseudo-code is a greatly simplified description of the
steps a simple program might take to perform I/O with a 3.5-inch drive.

 //
 // Initialize everything
 //
 Save SLTROMSEL and CYAREG
 Switch in internal slot 6 and set fast speed
 Turn off disk I/O switches (to insure a "safe" state)
 Select the 3.5-inch drive (turn on bit 6 of DISKREG)
 Set IWM mode register to $0F
 Select drive 1 or 2 (access SELECT or SELECT+1)
 Turn on drive (access ENABLE+1)
 Turn on spindle motor (LDA #$08; JSR CONT35)

 //
 // if current track number is unknown
 // move to track 0
 //
 IF we do not know what track we are currently on
 Set step direction = out (LDA #$01; JSR CONT35)
 WHILE Not at track 0 (LDA #$0A; JSR STAT35; BPL ...)
 Step one track (LDA #$04; JSR CONT35)
 WHILE still stepping (LDA #$04; JSR STAT35; BPL ...)
 do nothing
 Set current track = 0

 //
 // determine how many steps to move to the desired track
 //
 IF current track < desired track

 Set step direction = in
 Set number of steps = desired track - current track
 ELSE IF current track > desired track
 Set step direction = out
 Set number of steps = current track - desired track
 ELSE
 Set number of steps = 0

 //
 // move to the desired track by repeatedly stepping
 //
 WHILE number of steps > 0
 Step one track
 WHILE still stepping (LDA #$04; JSR STAT35; BPL ...)
 do nothing
 number of steps = number of steps - 1

 //
 // Set up track and side; wait for disk drive to be ready
 //
 Set current track = desired track
 Select desired side (LDA #$01 or LDA #$03; JSR STAT35)
 WHILE not ready to read (LDA #$0B; JSR STAT35; BMI ...)
 do nothing

 //
 // Perform the desired disk access
 //
 Read or write your data (this is the FUN part!)

 //
 // Clean up
 //
 Turn off spindle motor (LDA #$09; JSR CONT35)
 Turn off drive (LDA ENABLE)
 Turn off CA0...LSTRB
 Set IWM mode register to $00
 Deselect 3.5 drive (turn off bit 6 of DISKREG)
 Restore slot and speed configuration
 Return to caller

You will probably notice that I glossed over the most important part:
the "read or write your data" part. The basic method is to use routines
like those listed above under the description of the IWM data register.
Unfortunately, the data must undergo considerable preparation before
writing and after reading.

Those of you who are lucky enough to own a copy of _Beneath Apple DOS_
will understand the kind of work that is necessary. For those not so
lucky, I must plead that a proper discussion would require another
article every bit as long as this one. Rather than try to tackle that
subject here, I will content myself with providing a sample program
(with commented source code) which shows one way the above information
can be put together to make a working program.

===================
Example of Disk I/O

===================
The program listed below was written to illustrate the steps necessary
to control the hardware of the 3.5 Drive from your own programs, without
the use of the operating system or the firmware. It is essentially a
3.5-inch version of the DUMP program by Don Worth which was printed in
"Beneath Apple DOS." It will read a track from a 3.5-inch disk into
your Apple's memory, in its raw, encoded form.

Included below are a commented source code listing and a hex dump
suitable for typing directly into the System Monitor (or capturing into
a text file and EXECing).

Instructions:

First, boot DOS 3.3 or ProDOS 8. DUMP3.5 should be compatible with
either operating system. If you booted ProDOS, get into BASIC.SYSTEM.
When you see the] prompt, type "BLOAD DUMP3.5", and then "CALL-151".
Store the number of the track you wish to examine in memory location 6,
and the disk side you wish to examine (0 for the lower side, anything
else for the upper side) in location 7. Put the disk to be examined in
Drive 1, and type "900G". The raw track data will then be found in
memory locations $1000 through $7FFF (this buffer is much longer than
an actual track, so the data will most likely be repeated several times
in the buffer).

For example,

]BLOAD DUMP3.5 (Load the program)
]CALL-151 (Enter the Monitor)
*6:20 (Select track $20)
*7:1 (Select upper side)
*900G (Run DUMP3.5 (do not forget to insert the disk first))
*1000.10FF (Examine the first 256 bytes of the track)

The usual Dire Warnings apply: I make no guarantees whatsoever for this
program. I have tested it, and it seems to work on my computer, but I
recommend using it ONLY on expendable disks, and ONLY with the
write-protect hole open. I assume no responsibility for any damage
which may result from the use or misuse of this program.

Be especially careful if you enter either the assemby listing or the hex
dump by hand since the slightest typographical error could turn a benign
tool into a malevolent disk-eating monster.

I hope this program helps clarify the disk access process. If there is
enough interest in an explanation of how to interpret what it accesses,
it might be possible to talk me into writing up an explanation of the
block encoding process.

I recommend first reading "Beneath Apple DOS", if you can find a copy,
and also the SmartPort chapter of the Firmware Reference.

===
Appendix A: Loading A Track Into Memory (Assembly Source)
===
;***
; DUMP3.5 -- Dump a track of a 3.5-inch disk to memory. (IIGS only)

;
; By Neil Parker -- inspired by Don Worth's DUMP program from "Beneath
; Apple DOS"
;
; Inputs: $06 = Track to be dumped
; $07 = Side to be dumped (0=lower side, non-0=upper side)
; Outputs: $1000-$7FFF = raw track data
;
; Example:
; *6:20 1 (Select track $20, upper side)
; *900G (Run DUMP3.5)
; *1000.10FF (Examine part of the track)
;***
 ORG $900
TRACK EQU 6 ;Track number
SIDE EQU 7 ;Side number
PTR EQU 8
BUFFER EQU $1000 ;Start address for track data
SLTROMSEL EQU $C02D ;Select internal/external ROMs for slots
DISKREG EQU $C031 ;Select 3.5/5.25 drive, control SEL line
CYAREG EQU $C036 ;System speed and motor-on-detect bits
CA0 EQU $C0E0 ;Phase 0, 3.5 drive control
CA1 EQU $C0E2 ;Phase 1, 3.5 drive control
CA2 EQU $C0E4 ;Phase 2, 3.5 drive control
LSTRB EQU $C0E6 ;Phase 3, control strobe
ENABLE EQU $C0E8 ;Turn drive off/on
SELECT EQU $C0EA ;Select drive 1/2
Q6 EQU $C0EC
Q7 EQU $C0EE
;
 LDA SLTROMSEL ;Get slot 6 status,
 PHA ;save it,
 AND #$BF ;force internal ROM+I/O for Slot 6
 STA SLTROMSEL
 LDA CA0 ;Clear disk I/O latches
 LDA CA1
 LDA CA2
 LDA LSTRB
 LDA ENABLE ;Insure that drive is off
 LDA SELECT ;Select drive 1
 LDA Q6 ;Set IWM for reading (a "safe" state)
 LDA Q7
 LDA #$F ;Configure IWM for 3.5 access
 JSR SELIWM
 LDA DISKREG ;Save old DISKREG
 PHA
 ORA #$40 ;Select 3.5 drive
 STA DISKREG
 LDA ENABLE+1 ;Turn drive on
 LDA #2 ;Is there a disk in the drive?
 JSR SEL35
 JSR TEST35
 BPL THERE ;If so, read
 JMP DONE ;otherwise quit
THERE LDA #8 ;Turn motor on
 JSR SEL35
 JSR TRIG35

 LDA #1 ;Set step direction=outward
 JSR SEL35
 JSR TRIG35
TSTTRK0 LDA #$A ;Are we at track 0 yet?
 JSR SEL35
 JSR TEST35
 BPL ATTRK0 ;If so, go read
 LDA #4 ;otherwise do a step
 JSR SEL35
 JSR TRIG35
SEEKING0 JSR TEST35 ;Step still in progress?
 BPL SEEKING0 ;If so, loop until step done
 BMI TSTTRK0 ;otherwise go see if we are at track 0 yet
ATTRK0 LDX TRACK ;What track did the user want?
 BEQ DUMP ;If track 0, we are already there -- go read
 LDA #0 ;else set step direction=inward
 JSR SEL35
 JSR TRIG35
SEEK LDA #4 ;Do a step
 JSR SEL35
 JSR TRIG35
SEEKING JSR TEST35 ;Step still in progress?
 BPL SEEKING ;If so, loop until step done
 DEX ;otherwise see if we have stepped enough yet
 BNE SEEK ;If not, go step again
DUMP LDA #$B ;Disk ready for reading yet?
 JSR SEL35
READYT JSR TEST35
 BMI READYT ;Loop until disk ready
 LDA SIDE ;What side did the user want?
 BEQ SIDE1 ;If 0, set lower side
 LDA #3 ;else set upper side
 BNE SETSIDE
SIDE1 LDA #1
SETSIDE JSR SEL35
 JSR TEST35
 PHP ;Save interrupt status
 SEI ;Do not let anything interrupt us
 LDA CYAREG ;Save old system speed
 PHA
 AND #$FB ;Set speed=fast
 ORA #$80
 STA CYAREG
 LDA #BUFFER ;change #> to #< and #< to #>.)
 STA PTR+1
 LDY #0
DUMPLP LDA Q6 ;Read a byte
 BPL DUMPLP ;Loop until we have a valid byte
 STA (PTR),Y ;Store byte in buffer
 INC PTR ;Advance buffer pointer
 BNE DUMPLP
 INC PTR+1
 LDA PTR+1 ;Buffer full yet?
 CMP #$80
 BCC DUMPLP ;If not, go read some more
 PLA ;Done. Restore system speed
 STA CYAREG

 PLP ;Restore interrupt status
 LDA #9 ;Turn motor off
 JSR SEL35
 JSR TRIG35
DONE LDA ENABLE ;Turn drive off
 LDA CA0 ;Clear disk I/O latches
 LDA CA1
 LDA CA2
 LDA LSTRB
 PLA ;Restore old DISKREG value
 STA DISKREG
 LDA #0 ;Configure IWM for 5.25 access
 JSR SELIWM
 PLA ;Restore original slot configuration
 STA SLTROMSEL
 RTS ;Amen.
;
;Subroutine to select 3.5 drive status/control registers
;Enter with accumulator=desired status:
; Bit 0=CA2 status
; Bit 1=SEL status
; Bit 2=CA0 status
; Bit 3=CA1 status
;
SEL35 BIT CA0
 BIT CA1+1
 BIT LSTRB
 BIT CA2
 LSR ;If bit 0 set, turn on CA2
 BCC S35A
 BIT CA2+1
S35A LSR ;If bit 1 set, turn on SEL
 PHA
 LDA DISKREG
 AND #$7F
 BCC S35B
 ORA #$80
S35B STA DISKREG
 PLA
 LSR ;If bit 2 set, turn on CA0
 BCC S35C
 BIT CA0+1
S35C LSR ;If bit 3 set, turn on CA1
 BCS S35D
 BIT CA1
S35D RTS
;
;Subroutine to read the status of the 3.5 drive
;First call SEL35 to select register to examine
;Result is in processor N (negative) flag
;
TEST35 BIT Q6+1
 BIT Q7
 RTS
;
;Subroutine to perform a 3.5 drive control function
;First call SEL35 to select function to be performed

;
TRIG35 BIT LSTRB+1
 BIT LSTRB
 RTS
;
;Subroutine to configure the IWM chip
;Before calling, make sure drive is OFF!
;Call with accumulator=desired Mode Register value
; A=$00 for 5.25 drive
; A=$0F for 3.5 drive
;
SELIWM TAY
 BIT Q6+1 ;Prepare to access Mode & Status Regs.
 JMP SELIWM2 ;First see if it is already set like we want it
SELIWM1 TYA
 STA Q7+1 ;Try writing to Mode Reg.
SELIWM2 TYA
 EOR Q7 ;Compare input to Status Reg.
 AND #$1F
 BNE SELIWM1 ;If not the same, try writing again
 BIT Q6 ;else prepare IWM for data
 RTS

==
Appendix B: Loading A Track Into Memory (Hex Dump)
==
Here is the hext dump corresponding to the above assembler listing. This
can be entered by hand into the Monitor, or you can capture it into a
text file, put "CALL-151" at the beginning and "3D0G" and
"BSAVE DUMP3.5,A$900,L$145" at the end, and EXEC it to create the program.

900:AD 2D C0 48 29 BF 8D 2D C0 AD E0 C0 AD E2 C0 AD
910:E4 C0 AD E6 C0 AD E8 C0 AD EA C0 AD EC C0 AD EE
920:C0 A9 0F 20 2E 0A AD 31 C0 48 09 40 8D 31 C0 AD
930:E9 C0 A9 02 20 F2 09 20 20 0A 10 03 4C D5 09 A9
940:08 20 F2 09 20 27 0A A9 01 20 F2 09 20 27 0A A9
950:0A 20 F2 09 20 20 0A 10 0F A9 04 20 F2 09 20 27
960:0A 20 20 0A 10 FB 30 E7 A6 06 F0 18 A9 00 20 F2
970:09 20 27 0A A9 04 20 F2 09 20 27 0A 20 20 0A 10
980:FB CA D0 F0 A9 0B 20 F2 09 20 20 0A 30 FB A5 07
990:F0 04 A9 03 D0 02 A9 01 20 F2 09 20 20 0A 08 78
9A0:AD 36 C0 48 29 FB 09 80 8D 36 C0 A9 00 85 08 A9
9B0:10 85 09 A0 00 AD EC C0 10 FB 91 08 E6 08 D0 F5
9C0:E6 09 A5 09 C9 80 90 ED 68 8D 36 C0 28 A9 09 20
9D0:F2 09 20 27 0A AD E8 C0 AD E0 C0 AD E2 C0 AD E4
9E0:C0 AD E6 C0 68 8D 31 C0 A9 00 20 2E 0A 68 8D 2D
9F0:C0 60 2C E0 C0 2C E3 C0 2C E6 C0 2C E4 C0 4A 90
A00:03 2C E5 C0 4A 48 AD 31 C0 29 7F 90 02 09 80 8D
A10:31 C0 68 4A 90 03 2C E1 C0 4A B0 03 2C E2 C0 60
A20:2C ED C0 2C EE C0 60 2C E7 C0 2C E6 C0 60 A8 2C
A30:ED C0 4C 39 0A 98 8D EF C0 98 4D EE C0 29 1F D0
A40:F4 2C EC C0 60

======================
Annotated Bibliography
======================

Apple Computer, Inc.
Apple IIGS Firmware Reference
Contains a lengthy description of the SmartPort firmware, including some
clues as to the functioning of the 3.5 Drive hardware and a diagram of
the layout of an individual block of data. You will also need Apple
IIGS Technical Note 25, which corrects some errors.

Apple Computer, Inc.
Apple IIGS Hardware Reference
Contains a description of the disk interface register (DISKREG, $C031)
and the internal registers of the IWM chip. You will also need Apple IIGS
Technical Note 30, which corrects numerous errors in the IWM descriptions.

Apple Computer, Inc.
Inside Macintosh, Volume III
Contains a description of most of the 3.5 Drive status and control bits.

Apple Computer, Inc.
Macintosh Family Hardware Reference
The 3.5 Drive information from Inside Macintosh is also reprinted in this
book, in several different locations.

Don Worth
Pieter Lechner
Beneath Apple DOS
Quality Software
Reseda, CA
1981
THE classic reference for anything and everything having to do with DOS 3.3
and the 5.25 Drive hardware. Although the 3.5 Drive is a much more complex
and powerful device, and uses a slightly different data format, much of the
low-level information in this book is still quite relevant.

Don Worth
Pieter Lechner
Beneath Apple ProDOS
Reston Publishing Company
Reston, VA
1984
This does for ProDOS what _Beneath Apple DOS_ did for DOS 3.3. It contains
a somewhat abbreviated version of the previous volume's description of
low-level formatting, and in addition offers some valuable information on
the functioning of the disk interface hardware.

